Active LeZi: An Incremental Parsing Algorithm for Sequential Prediction

نویسندگان

  • Karthik Gopalratnam
  • Diane J. Cook
چکیده

Prediction is an important component in a variety of domains in Artificial Intelligence and Machine Learning, in order that Intelligent Systems may make more informed and reliable decisions. Certain domains require that prediction be performed on sequences of events that can typically be modeled as stochastic processes. This work presents Active LeZi (ALZ), a sequential prediction algorithm that is founded on an Information Theoretic approach, and is based on the acclaimed LZ78 family of data compression algorithms. The efficacy of this algorithm in a typical Smart Environment – the Smart Home, is demonstrated by employing this algorithm to predict device usage in the home. The performance of this algorithm is tested on synthetic data sets that are representative of typical interactions between a Smart Home and the inhabitant. In addition, for the Smart Home environment, we introduce a method of learning a measure of the relative time between actions using ALZ, and demonstrate the efficacy of this approach on synthetic Smart Home data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal prediction of individual sequences

Abstruct-The problem of predicting the next outcome of an individual binary sequence using finite memory, is considered. The finite-state predictability of an infinite sequence is defined as the minimum fraction of prediction errors that can be made by any finite-state (FS) predictor. It is proved that this FS predictability can be attained by universal sequential prediction schemes. Specifical...

متن کامل

Study of LZ-Based Location Prediction and Its Application to Transportation Recommender Systems

Predicting users' next location allows to anticipate their future context, thus providing additional time to be ready for that context and react consequently. This work is focused on a set of LZ-based algorithms (LZ, LeZi Update and Active LeZi) capable of learning mobility patterns and estimating the next location with low resource needs, which makes it possible to execute them on mobile devic...

متن کامل

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

Incremental Parsing with Parallel Multiple Context-Free Grammars

Parallel Multiple Context-Free Grammar (PMCFG) is an extension of context-free grammar for which the recognition problem is still solvable in polynomial time. We describe a new parsing algorithm that has the advantage to be incremental and to support PMCFG directly rather than the weaker MCFG formalism. The algorithm is also top-down which allows it to be used for grammar based word prediction.

متن کامل

Statistical Ltag Parsing

STATISTICAL LTAG PARSING Libin Shen Aravind K. Joshi In this work, we apply statistical learning algorithms to Lexicalized Tree Adjoining Grammar (LTAG) parsing, as an effort toward statistical analysis over deep structures. LTAG parsing is a well known hard problem. Statistical methods successfully applied to LTAG parsing could also be used in many other structure prediction problems in NLP. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003